Category Archives: Project updates

Proxima b is our neighbor… better get used to it!

It is true. We are convinced that there is a planet orbiting Proxima now. The evidence goes as follows : a signal was spotted back in 2013 on previous surveys (UVES and HARPS). The preliminary detection was first done by Mikko Tuomi, our in-house applied mathematician and his Bayesian codes. However, the signal was not convincing as the data was really sparse and the period was ambiguous (other possible solutions at 20 and 40 days, plus a long period signal of unknown origin). We followed up Proxima in the next years but our two observing runs were 12 days, barely sufficient to secure a signal which ended up being 11.2 days. So the Pale Red Dot was designed with the sole purpose of confirming or refuting its strict periodicity, plus carefully monitor the star for activity induced variability. We got very lucky with the weather so we obtained 54 out of 60 observations. The photometric monitoring telescopes (ASH2 and several units of Las Cumbres Observatory Global Telescope network), worked flawlessly so we could see the effect of spots, flares and rotation of the star, which also had a footprint on the spectra. However, nothing indicated that spurious variability would be happening at 11.2 days.

This plot shows how the motion of Proxima Centauri towards and away from Earth is changing with time over the first half of 2016. Sometimes Proxima Centauri is approaching Earth at about 5 kilometres per hour — normal human walking pace — and at times receding at the same speed. This regular pattern of changing radial velocities repeats with a period of 11.2 days. Careful analysis of the resulting tiny Doppler shifts showed that they indicated the presence of a planet with a mass at least 1.3 times that of the Earth, orbiting about 7 million kilometres from Proxima Centauri — only 5% of the Earth-Sun distance.
This plot shows how the motion of Proxima Centauri towards and away from Earth is changing with time over the first half of 2016. Sometimes Proxima Centauri is approaching Earth at about 5 kilometres per hour — normal human walking pace — and at times receding at the same speed. This regular pattern of changing radial velocities repeats with a period of 11.2 days. Careful analysis of the resulting tiny Doppler shifts showed that they indicated the presence of a planet with a mass at least 1.3 times that of the Earth, orbiting about 7 million kilometres from Proxima Centauri — only 5% of the Earth-Sun distance.

So that’s basically it : the Pale Red Dot campaign also detects the same period, and confirms that the signal has been in phase for the 16 years of accumulated observations. This is a requirement for a proper Keplerian orbit. Features like starspots are more short lived plus affect the velocities in the time-scales of the rotation of the star, which is now confirmed at ~83 days.

The combination of all the data produces this periodogram


which leaves little doubt to the reality of the signal. The peaks in a periodogram tells us where a significant period is spotted, plus give us information about its significant. The horizontal lines correspond to False Alarm Probabilities of 10%, 1% and 0.1%. Our signal is now well beyond that. The probability of a statistical false positive is smaller than one of ten millions!

So what we know? We know the period and the size of the radial velocity wobble. From that we derive a minimum mass of 1.3 masses of the Earth. With the period and the mass of the star, we know it orbits at 5% of an astronomical unit (this is 20 times closer than Earth is from the Sun), which combined with the luminosity of the star tells us that the planet is warm and can currently support liquid water on its surface. Beyond this, all is mostly speculative. But one can do simulations and educated guesses. If you want to learn more about them, follow forthcoming articles at

and a contributed one to this website by Rory Barnes.

We had a press release event at ESO today. We want to thank everyone for the passion and effort shared in this project, including the Breakthrough Starshot foundation and its chair Pete Worden for giving us their support. We hope to reach the stars, there is a foundation to promote technological advancements, and now we have a target. The sky is the limit!

Peer review — or how an experiment becomes scientific literature

What is happening now?

Now that the data collection and  analysis are complete and the results written in a paper, the next step is for the paper to be verified by the scientific community before going public. Peer review is the process the scientific community uses  for quality control of results. While a new exoplanet or supernova might have little impact on our immediate life, mistakes in some scientific disciplines (eg. biomedical research, chemistry, climate change,.. ) can have very serious consequences. Requests for research funding, patents, space missions and even new medicines are generally not accepted unless they rely on publicly available, peer reviewed research.

An important component of the peer review process are the scientific journals. Some journals will publish anything as long as it is scientifically correct, while some others will only publish results that are deemed novel or represent a very significant advance.

Who decides what it is correct and significant?

For each paper, there are at least two key people that are responsible for assessing correctness and significance. They are the editor and the referee(s). To understand how peer review works, it is better to explain the life cycle of a scientific paper.

Flow chart of the peer review process.
Flow chart of the peer review process. The approximate status of our paper as of July 1st, is marked with the red dot.


The authors must choose to submit their paper to a journal of their choice. Once the journal receives the manuscript, a scientific editor is assigned to it. This editor manages and supervises the process. Editors are respected senior scientists that work full-time for the journal, or work at a University and part-time for the journal. Papers can be rejected at this stage because the editor considers there is not sufficient original science in the result, or because the article does not match the philosophy of the journal.

Paper sent to review

After a preliminary quality assessment, the editor will search for experts to provide a more detailed revision.  These experts (called referees) are scientists not involved in the result but are experts in the field to which the paper relates. One or more referees can be assigned to a paper, and they are asked to submit a report within a  few weeks.

Referees’ opinions have a lot of leverage over the fate of a scientific result. Since referees are likely to be working on a related topic, conflicts of interest can arise and it is the editors job to carefully monitor the process. For example, if a reviewer is exceedingly enthusiastic, aggressive (or even careless), editors can search for additional referees or ignore a review. Referees are asked to follow strict ethical rules and confidentiality. The identity of the referees is not revealed to the authors to protect their independence.

First revision

After a while referee reports are sent to the editor and s/he then decides whether or not to proceed with the publication. Passing first revision is an important milestone because serious show stoppers are often identified at this stage. If the referee reports are not negative, the editor forwards them to the authors, and they are given some time to address comments and criticisms. Typical requests consist of providing additional data, analyses, adding references to previous work, and providing better discussion on obscure points of the original manuscript.

This is where we are with our Proxima paper!

After implementing the changes, the authors re-submit the article together with responses to the referee reports. The editor forwards all this information to the referees, and the process is iterated until the editor accepts it.


At acceptance the editor has become convinced that the paper meets the quality standards of the journal. They then write an acceptance notification which is met with great delight by the authors.

We hope to reach that point soon!

… but it is not over yet

Acceptance only concerns the content. At this stage authors might need to remake plots, prepare final tables and even rewrite some small parts of the paper. This process is done in collaboration with the production teams of the journal and can take from a few days to a few weeks. Final editing is performed in collaboration with professional writers who take account of English language and style.

As in any other professionally published work, the last editorial step consists of sending the paper in its very final format (commonly called  ‘galley proofs’) to the authors for their final approval. When this is done, a publication date is assigned and the peer review process is complete.


Scientific results can also be presented in conferences or other media, but these are not considered valid references unless they are published in a peer review journal. Alternative peer review procedures are being tested, but still the vast majority of scientific production goes through this classic peer review system.

… reaching the public!

It is becoming increasingly important to raise awareness of new scientific (peer reviewed) discoveries, and to be clear of what they mean to all of us. Scientists often don’t have time nor the skills to do that, so this falls into the hands of outreach, press offices, science writers and science communicators in general. When a significant result is achieved, the information needs to be transformed from the dry rigour of a scientific paper to something non-specialised audiences can digest. This includes the so-called general public, but also companies, governments and policy makers who might need to decide on crucial matters based on the most updated evidence.

So, if you are a scientist and once the paper is accepted for publication, it’s a good time to contact your outreach department and work together on how to best bring the new results to the public.

Farewell, Pale Red Dot #1

The Pale Red Dot team now goes back to their daily duties. A research paper has been written and submitted to a research journal. The review process can take anytime between a few weeks to a few months. Fingers crossed! The web articles and posts in social media will remain available for your enjoyment.

A second phase of Pale Red Dot project might start soon, with more articles and further details on what the data tells us. Do not delete us from your favourite lists just yet!

Cheers, and don’t forget to look at the sky from time to time!


Pale Red Dot team

Science and edition; Guillem Anglada-Escude (editor-in-chief), Gavin Coleman, John Strachan (QMUL/UK), Cristina Rodríguez-López, Zaira M. Berdinas, Pedro J. Amado (IAA/Spain), James Jenkins (UChile/Chile), Mikko Tuomi (Herts/UK), Christopher J. Marvin, Stefan Dreizler (U.Goettingen/Germany), Julien Morin (U.Montpellier), Alexandre Santerne (CAUP/Portugal), Yiannis Tsapras(Heidelberg/Germany).

Support; Matthew McKinley Mutter (English language editor, QMUL/UK), Predrag Micakovic (web & IT support, QMUL/UK), Silbia López de Lacalle, Ruben Herrero Illana (Editorial support and spanish translations, IAA/CSIC), Radek Kosarzycki (media partner, polish translations)

Observatories; Oana Sandu, Lars Lindberg Christiansen, Richard Hook (European Southern Observatory, Education and Public Outreach Department), Edward Gomez (, Scientist & outreach officer), Nicolás Morales (Research scientists, SPACEOSB-San Pedro de Atacama Celestial Explorations)

Première moitié des données Doppler

Nous sommes déjà à mi-parcours des observations menées avec HARPS, et ASH2, et il est temps de vous donner un premier aperçu des mesures Doppler obtenues par HARPS. Comme nous l’avons vu dans l’article « Le signal » nous nous attendons à observer des variations de « quelques » mètres par secondes dans les mesures de vitesse radiale. L’amplitude de ces variations ne doit pas dépasser 4 à 5 m/s tout au plus, sinon elles aurait déjà été détectées lors du relevé mené avec l’instrument UVES. Nous ne pouvons malheureusement pas dévoiler ici le vrai jeu de données, pour ne pas biaiser le futur processus de révision de la publication. Nous présentons à la place quelques exemples de mesures Doppler similaires à celles obtenues pour Proxima Centauri. Ces jeux de données artificiels correspondent aux mêmes 30 dates d’observations que celles de la campagne Pale Red Dot, et sont représentatifs des trois types de résultats possibles. Mais il y a une astuce ! L’un de ces six jeux de données correspond aux « vraies » observations… Saurez-vous deviner lequel ?

Cas 1 – Variabilité des mesures de vitesse radiale dominées par un bruit aléatoire

Les images de gauche présentent deux jeux de mesures Doppler représentatifs de ce cas. Celles du milieu présentent l’un des diagrammes utilisés pour mettre en évidence des périodicités dans ces jeux de données. Et enfin celles de droite présentent les même données qu’à gauche mais rephasées pour la période la plus probable identifiée au milieu et auxquelles est superposée un modèle d’orbite vraisemblable (courbe bleue). Aucun signal périodique significatif n’est détecté pour ces deux jeux de données. Crédit : Guillem Anglada-Escude/

Les images de gauche dans la Figure 1 représentent deux exemples typiques de jeu de données ne contenant qu’un bruit de fond. Les segments verticaux associés à chaque point de mesure sont les barres d’erreurs et représentent visuellement l’incertitude associée à chaque mesure (~1 m/s). On note que la taille de ces barres d’erreur varie, notamment en fonction des conditions météo. L’image centrale présente un diagramme appelé « périodogramme ». Ces périodogrammes permettent de visualiser les signaux périodiques présents dans les données et de déterminer lesquels sont statistiquement significatifs. Dans cet exemple nous avons défini une limite de détection correspondant à une probabilité de fausse alarme de 0,1%. Les pics du périodogramme qui dépassent cette ligne ont une probabilité de 1/1 000 d’être dus au hasard et donc de 999/1 000 d’être réels. Aucun de ces deux jeu de données ne contient de signal significatif.

Cas 2 – Soupçon de signal, masqué par la variabilité

Une inspection visuelle de la figure suggère qu’il pourrait exister une variation cohérente qui se distingue mal du bruit. Les modèles d’orbites Képlériennes sur l’image de droite ont des excenticités élevées caractéristiques des artefacts causés par la variabilité. Crédit : Guillem Anglada-Escude/

Nous présentons ici deux jeux de données contenant un possible signal Doppler, mais celui-ci est masqué par l’activité stellaire. Comme dans le cas 1, aucun de ces deux jeux de données n’est suffisant pour confirmer l’existence d’un signal. Les données supplémentaires acquises pendant la suite de la campagne permettraient d’accroître le niveau de significativité du signal associé à de véritables planètes tandis que les pics associés à des bruits de fond diminueraient. Dans de tels cas, nous tenterions de modéliser l’activité stellaire à partir des autres données photométriques et spectroscopiques acquises pendant la campagne. Cela permettrait de vérifier si certaines des périodes détectées peuvent être reliées à l’activité stellaire. Des techniques de ce type sont présentées par la professeure Suzanne Aigrin dans l’interview qui lui est consacrée.

Cas 3 – Un signal est clairement détecté malgré l’activité stellaire

Figure 3 - In this two cases, signals stands out over the threshold and the right fits look a bit better, Note that these sets only contain 1/2 of the data and are barely above threshold, so even in this case we would need to wait until the end of the run and the photometric monitoring to see if their significance improves. Image credits : Guillem Anglada-Escude/
Dans ces deux cas le signal est clairement au-dessus du seuil de détection, et les modèles présentés à droite paraissent plus convaincants. Remarquons que ces jeux de données ne contiennent que la moitié des mesures et que leur significativité est à peine au-dessus du seuil fixé arbitrairement. Même dans ce cas favorable nous devrions attendre la fin de la campagne d’observations et du suivi photométrique pour confirmer la significativité du signal mis en évidence. Crédit : Guillem Anglada-Escude/

Dans ces deux derniers cas, les jeux de données simulés correspondent à un véritable signal planétaire qui ressort nettement du bruit de fond (Figure 3). Ce serait le scénario le plus favorable pour le projet Pale Red Dot. Nous devrions néanmoins rechercher des signatures de variabilité associée à l’activité stellaire en confrontant les mesures Doppler avec les mesures photométriques et les autres indicateurs d’activité.

Merci de nous suivre !

‘The Signal’

The campaign is up and running! As of February 9th 2016, we have only lost two nights on HARPS due to weather, which means we have 15 good qualityspectra ready for processing. On the photometric follow-up side, the LCOGT telescopes have been obtaining good data (photometry in UBV bands), and the ASH2 telescope has already accumulated 19 nights of good photometry as well (visual and red colours). The BOOTES station is suffering technical difficulties that we hope to sort out soon. Fortunately, the ASH2 telescope (the last one to join the effort, but the most successful photometer so far!) offered a degree of redundancy that saved the day! We will introduce all the observatories involved in forthcoming posts.

Status update of the observations. We recently reached 25% of the HARPS data, and two photometric follow-up observatories have been operating nicely over the same period. We expect more downtime due to weather, but the survey goals will probably be achieved if we can hit 80% of the planned observations.

Now that we also had the opportunity to read about the Doppler method and how stellar activity can mimic the presence of a planet, let’s talk about what we are trying to achieve here. Analysis of previous campaigns show that a possible smooth signal was observable when monitoring the star at moderately high cadence; but we must remain cautious because stellar activity can produce the same kind of variability. As described in the article by Paul Gilster, Proxima has been monitored for small planets before. The most exhaustive works include the UVES/ESO survey for rocky planets around M-dwarfs, conducted between 2000 and 2009; the searches with HARPS by the Geneva team; and recently obtained data from our own high cadence program with HARPS, called Cool Tiny Beats(2013-2014). Here are some of the technical details for those of you who are interested in them…

The VLT/UVES Doppler data, and possible signals in it

The UVES Doppler measurements were published in Kuester & Endl 2008. In previous posts (eg. see Figure 1), we have seen that if we have a planet we should see an oscillatory motion over time. These measurements didn’t look much like that (Figure 2). Still, the velocities of UVES seemed to be not completely random.

Example of measurements (in red) overplotted on the expected Doppler signal caused by an exoplanet on the Star. Changes in the velocity of the Sun-like star 51 Peg used by M. Mayor and D. Queloz to infer the presence of a gas-giant planet in a short period orbit around the star.
Figure 1. Example of measurements (in red) overplotted on the expected Doppler signal caused by an exoplanet orbiting a star. Changes in the velocity of the Sun-like star 51 Peg, used by M. Mayor and D. Queloz were used to  infer the presence of a gas-giant planet in a short period orbit around the star.
Doppler measurements of Proxima from UVES. No clear sinusoid can be spotted by eye, which already rules out the presence of long period gas giants around the star.
Figure 2. Doppler measurements of Proxima from UVES. No clear sinusoid can be spotted by eye, which already rules out the presence of long period gas giants around the star.

Stars are only visible for a few months of a year, so that could be the smoking gun of a planet with a period similar to Earth that we happen to be sampling at more or less random moments of the orbit. Kuester & Endl 2008 had reasons to suspect that this variability was indeed caused by activity, or even some unknown instrumental effect. Once that possible signal was removed by fitting a sinusoid to it, very little remained in the residuals besides apparently random noise at the 2-3 m/s level. The Doppler signal of a planet is stronger if the planet is closer to the star (as in the Solar System where Mercury takes less than three months to circle the Sun, the motion of close-in planets is faster). So, while no clear signal could be extracted from these measurements, the data did tell the researchers that no large planets were orbiting the star with periods shorter than few hundred days.

Limits to the minimum mass of planets orbiting Proxima. Concerning the 'Habitable Zone' (here marked in green between 4 and 15 days, but new models suggest it extends to periods as long as 27 days), planets down to 3 Earth masses (minimum mass) were ruled out by the data.
Figure 3. Limits to the minimum mass of planets orbiting Proxima. The ‘Habitable Zone’  is marked in green between 4 and 15 days, but new models suggest it extends to periods as long as 27 days. Planets down to 3 Earth masses (minimum mass) were ruled out by the data. Extracted from Endl, M.; Kürster, M. 2008 A&A

The minimum masses of planets ruled out by UVES are illustrated in Figure 3. Let us note that we say ‘minimum mass’ of the planet because the Doppler method only measures the motion along our line of sight. Even in that case, statistical arguments indicate that it is highly unlikely to find any planet less than ~5 times the mass of the Earth in its habitable zone, with other techniques. With this upper limit set, the UVES program stopped observing Proxima and another handful of M-dwarf stars at the end of 2008.

The HARPS/Geneva team observations of Proxima prior 2012

During the same years, Proxima was observed about 25 times with HARPS. While the star did show variability at the 2-3 m/s level, it also showed evidence of activity in occasional flaring events, and some excess of radiation coming from its chromosphere. In any case, the measurements were consistent with those of the UVES survey in the sense that no obvious signal was detectable above ~2 m/s. In 2013, the star was again observed in the extended HARPS survey for M-dwarfs led by the ex-Geneva astronomer X. Bonfils, now based in Grenoble, but no report has appeared on significant period variability so far. So these campaigns led to no convincing evidence of a signal.

Doppler velocity measurements by X.Bonfils and his team taken between 2002 and 2009 with HARPS. Source : Bonfils et al. 2013 A&A, available via arXiv.
Doppler velocity measurements by X.Bonfils and his team taken between 2002 and 2009 with HARPS. Source : Bonfils et al. 2013 A&A, available via arXiv.

The ‘HARPS – Cool Tiny Beats’ observations (2013-2014)

In 2013, the same team as  the Pale Red Dot campaign started a programme to measure radial velocities at high cadence (focused on a small sample of very nearby M-dwarfs) to hunt for short period planets, pulsations and understand the connection of stellar activity with apparent Doppler signals. Proxima was a natural target for the survey, which was executed in two runs of 12 nights each (May 2013-Jan 2014). As opposed to the rest of the stars in the sample, the radial velocity measurements of Proxima were smoothly varying over both observing runs. Unfortunately, given the length of both runs, the strict periodicity of the variability could not be verified. Worse than this, the long term Doppler variability found by the UVES survey was still present but seems rather unpredictable, meaning that combining the data from years ago did not help much in confirming it. This is when Pale Red Dot was conceived…

Doppler measurements of Proxima obtained in 12 consecutive nights in May 2013, suggestive of smooth variability on the timescale between 10 and 20 days. The origin of this 'signal' is what the Pale Red Dot campaign is trying to figure out. Image credits : G.Anglada-Escude.
The top panel contains Doppler measurements of Proxima obtained in 12 consecutive nights in May 2013 which are suggestive of smooth variability on the timescale between 10 and 20 days. The lower panel is what we call a ‘periodogram’, which is a mathematical tool to identify possible periodicities in the data. Because the observing run was limited to ~12 days, we cannot really constrain the putative period with this data only. The Pale Red Dot campaign is trying to figure out if this is a strictly periodic signal feature by observing the star ~60 nights in a row, thus covering several cycles of the putative signal, and comparing the variability with simultaneous photometry. Image credits: G.Anglada-Escude.

So while we are convinced there is a signal in the Doppler measurements of Proxima, previous data do not allow to confirm its presence and clarify its origin. The long term variability of Proxima spoiled our attempts to combine data from previous observations so we needed a dedicated campaign.

In summary

Combination of UVES and HARPS data at different cadences suggest that the star is showing a smoothly varying Doppler signal. Since the UVES survey set an upper limit between 2-3 Earth masses and if the signal is not activity induced, it must correspond to a planet smaller than that (between 1-2 Earth masses>). The signal might well be caused by stellar activity, which should be quasi-periodic as opposed to the strict periodicity of the orbital motion of a putative planet. So this is what we want to figure out! If you really want to learn more, feel free to any member of the Pale Red Dot team!

What is the exact plan?

We are following Proxima Centauri for about two months. If the planet is there we should see the velocity of the star going up and down between 3 and 5 times depending on the precise period. Simultaneously, we are monitoring Proxima with telescopes from, the ASH2 Atacama telescope and the BOOTES network. The contiguous and regular sampling of the observations together with quasi-simultaneous photometry should allow us to model its long term variability better and, hopefully, confirm whether the Doppler signal is caused by a planet or not. If it isn’t…  we will move on and keep searching for #palereddots around other nearby stars…

Thanks for following!

Lancement !

… comme ça vous espérez trouver un point rouge pâle ?

Oui! Nous pensons qu’il existe peut-être une petite planète en orbite autour de l’étoile la plus proche du voisinage solaire, une étoile naine M appelée Proxima Centauri. Mais il pourrait aussi s’agir d’activité magnétique. Nous observerons Proxima pendant deux mois avec l’instrument HARPS, la machine à découvrir les exoplanètes, au télescope de 3,6m de l’ESO et avec deux réseaux de télescopes plus petits. Un telle campagne d’observations ne devrait laisser aucun doute quant à la nature du signal Doppler, mais… attendez une seconde !

Un signal Doppler??@#!… qu’est-ce que ça peut bien être? Une étoile naine M magnétique, est-ce que c’est le surnom d’une chanteuse de métal gothique ? Une campagne de deux mois ? Ça a l’air long et ennuyeux ! Vous ne pouvez pas trouver des planètes autrement ? Ça ne serait pas mieux avec un télescope spatial ? Combien de temps avant que l’on puisse se rendre sur ces planètes ? …

Pour répondre à ces question, et à bien d’autres, nous publierons sur le site des articles écrits par des scientifiques de renom traitant des planètes extrasolaires, de la recherche de la vie au delà de la Terre, d’instruments présents et futurs, et de ce que nous pensons à propos de la vie, de l’univers et du reste… 😉

Comme tout les  bonnes choses dans la vie, Pale Red Dot sera une expérience intense mais (trop) courte. Une fois que toutes les données auront été acquises (fin mars), le coeur du travail commencera : l’analyse des données, et le site sera mis en veille pour quelques temps. Après cela les résultats seront envoyés à une revue scientifique à comité de lecture, et alors seulement nous pour annoncer le (glorieux ?) dénouement. Qui sait ce qui se produira ! Ce travail pourra prendre des mois, mais nous ferons de notre mieux pour vous tenir informés.

Vous voulez savoir si cette planète existe ? Nous aussi ! Alors restez connectés…

… et alors quel genre d’article allez vous publier ?

  • Les articles Expert insights et Expert opinions sont écrits par des pionniers de la recherche d’exoplanètes, des responsables de missions spatiales et d’instruments équipant des télescopes géants, des visionnaires et autres étoiles montantes de la recherche d’exoplanètes et de la physique stellaire. Les Expert opinions seront toujours publiés le dimanche (parfait pour accompagner les croissants), et les Expert insights pendant la semaine (excellent pour lire dans le tram’).
  • Les articles Observatory life présenteront le fonctionnement des différents observatoires et l’acquisition de données astronomiques avec des instruments de pointe. Les photos du quotidien et les vidéos des coulisses en feront partie ! 
  • Les articles Project updates seront mis en ligne chaque vendredi et souligneront les temps forts de la semaine, y compris les récriminations habituelles contre le mauvais temps. Nous n’obtiendrons aucune donnée si le temps est couvert, c’est pour cela que les astronomes sont parmi les rares à parler avec intérêt du temps qu’il fait.

Alors, êtes-vous prêts à suivre en temps réel notre chasse à l’exoplanète ?

Si vous avez des questions, nous y répondrons avec plaisir sur Twitter, @Pale_Red_Dot et #PaleRedDot.

La quête commence le 15 janvier 2016 !

Pale Red Dot (« un point rouge pâle ») est un projet de recherche et d’information scientifique pour le grand public sur l’astronomie et la recherche d’exoplanètes qui débutera le 15 janvier 2016. Pale Red Dot est une initiative conjointe des scientifiques impliqués dans le programme d’observations, le service de vulgarisation scientifique de l’Observatoire Européen Austral (European Southern Observatory,, et plusieurs institutions partenaires incluant :  Queen Mary University of London/Royaume-Uni (, Instituto de Astrofísica de Andalucía/Espagne (, Universidad de Chile/Chili (, University of Hertfordshire/Royaume-Uni (, University of Goettingen/Allemagne (, Université de Montpellier/France (, (, et le réseau de télescopes BOOTES (

Le site web Pale Red Dot proposera au cours des prochains mois des mises à jours régulières sur l’avancement de la campagne de données,  ainsi que des articles scientifiques rédigés par des astrophysiciens et journalistes scientifiques. Plus de détails sur le projet de recherche ainsi que sur le programme d’informations scientifiques seront bientôt disponibles.

Restez à l’écoute !