Category Archives: Project updates

Proxima b is our neighbor… better get used to it!

It is true. We are convinced that there is a planet orbiting Proxima now. The evidence goes as follows : a signal was spotted back in 2013 on previous surveys (UVES and HARPS). The preliminary detection was first done by Mikko Tuomi, our in-house applied mathematician and his Bayesian codes. However, the signal was not convincing as the data was really sparse and the period was ambiguous (other possible solutions at 20 and 40 days, plus a long period signal of unknown origin). We followed up Proxima in the next years but our two observing runs were 12 days, barely sufficient to secure a signal which ended up being 11.2 days. So the Pale Red Dot was designed with the sole purpose of confirming or refuting its strict periodicity, plus carefully monitor the star for activity induced variability. We got very lucky with the weather so we obtained 54 out of 60 observations. The photometric monitoring telescopes (ASH2 and several units of Las Cumbres Observatory Global Telescope network), worked flawlessly so we could see the effect of spots, flares and rotation of the star, which also had a footprint on the spectra. However, nothing indicated that spurious variability would be happening at 11.2 days.

This plot shows how the motion of Proxima Centauri towards and away from Earth is changing with time over the first half of 2016. Sometimes Proxima Centauri is approaching Earth at about 5 kilometres per hour — normal human walking pace — and at times receding at the same speed. This regular pattern of changing radial velocities repeats with a period of 11.2 days. Careful analysis of the resulting tiny Doppler shifts showed that they indicated the presence of a planet with a mass at least 1.3 times that of the Earth, orbiting about 7 million kilometres from Proxima Centauri — only 5% of the Earth-Sun distance.
This plot shows how the motion of Proxima Centauri towards and away from Earth is changing with time over the first half of 2016. Sometimes Proxima Centauri is approaching Earth at about 5 kilometres per hour — normal human walking pace — and at times receding at the same speed. This regular pattern of changing radial velocities repeats with a period of 11.2 days. Careful analysis of the resulting tiny Doppler shifts showed that they indicated the presence of a planet with a mass at least 1.3 times that of the Earth, orbiting about 7 million kilometres from Proxima Centauri — only 5% of the Earth-Sun distance.

So that’s basically it : the Pale Red Dot campaign also detects the same period, and confirms that the signal has been in phase for the 16 years of accumulated observations. This is a requirement for a proper Keplerian orbit. Features like starspots are more short lived plus affect the velocities in the time-scales of the rotation of the star, which is now confirmed at ~83 days.

The combination of all the data produces this periodogram

detection_periodogram

which leaves little doubt to the reality of the signal. The peaks in a periodogram tells us where a significant period is spotted, plus give us information about its significant. The horizontal lines correspond to False Alarm Probabilities of 10%, 1% and 0.1%. Our signal is now well beyond that. The probability of a statistical false positive is smaller than one of ten millions!

So what we know? We know the period and the size of the radial velocity wobble. From that we derive a minimum mass of 1.3 masses of the Earth. With the period and the mass of the star, we know it orbits at 5% of an astronomical unit (this is 20 times closer than Earth is from the Sun), which combined with the luminosity of the star tells us that the planet is warm and can currently support liquid water on its surface. Beyond this, all is mostly speculative. But one can do simulations and educated guesses. If you want to learn more about them, follow forthcoming articles at

www.proximacentauri.info

and a contributed one to this website by Rory Barnes.

We had a press release event at ESO today. We want to thank everyone for the passion and effort shared in this project, including the Breakthrough Starshot foundation and its chair Pete Worden for giving us their support. We hope to reach the stars, there is a foundation to promote technological advancements, and now we have a target. The sky is the limit!

Peer review — or how an experiment becomes scientific literature

What is happening now?

Now that the data collection and  analysis are complete and the results written in a paper, the next step is for the paper to be verified by the scientific community before going public. Peer review is the process the scientific community uses  for quality control of results. While a new exoplanet or supernova might have little impact on our immediate life, mistakes in some scientific disciplines (eg. biomedical research, chemistry, climate change,.. ) can have very serious consequences. Requests for research funding, patents, space missions and even new medicines are generally not accepted unless they rely on publicly available, peer reviewed research.

An important component of the peer review process are the scientific journals. Some journals will publish anything as long as it is scientifically correct, while some others will only publish results that are deemed novel or represent a very significant advance.

Who decides what it is correct and significant?

For each paper, there are at least two key people that are responsible for assessing correctness and significance. They are the editor and the referee(s). To understand how peer review works, it is better to explain the life cycle of a scientific paper.

Flow chart of the peer review process.
Flow chart of the peer review process. The approximate status of our paper as of July 1st, is marked with the red dot.

Submission

The authors must choose to submit their paper to a journal of their choice. Once the journal receives the manuscript, a scientific editor is assigned to it. This editor manages and supervises the process. Editors are respected senior scientists that work full-time for the journal, or work at a University and part-time for the journal. Papers can be rejected at this stage because the editor considers there is not sufficient original science in the result, or because the article does not match the philosophy of the journal.

Paper sent to review

After a preliminary quality assessment, the editor will search for experts to provide a more detailed revision.  These experts (called referees) are scientists not involved in the result but are experts in the field to which the paper relates. One or more referees can be assigned to a paper, and they are asked to submit a report within a  few weeks.

Referees’ opinions have a lot of leverage over the fate of a scientific result. Since referees are likely to be working on a related topic, conflicts of interest can arise and it is the editors job to carefully monitor the process. For example, if a reviewer is exceedingly enthusiastic, aggressive (or even careless), editors can search for additional referees or ignore a review. Referees are asked to follow strict ethical rules and confidentiality. The identity of the referees is not revealed to the authors to protect their independence.

First revision

After a while referee reports are sent to the editor and s/he then decides whether or not to proceed with the publication. Passing first revision is an important milestone because serious show stoppers are often identified at this stage. If the referee reports are not negative, the editor forwards them to the authors, and they are given some time to address comments and criticisms. Typical requests consist of providing additional data, analyses, adding references to previous work, and providing better discussion on obscure points of the original manuscript.

This is where we are with our Proxima paper!

After implementing the changes, the authors re-submit the article together with responses to the referee reports. The editor forwards all this information to the referees, and the process is iterated until the editor accepts it.

Acceptance

At acceptance the editor has become convinced that the paper meets the quality standards of the journal. They then write an acceptance notification which is met with great delight by the authors.

We hope to reach that point soon!

… but it is not over yet

Acceptance only concerns the content. At this stage authors might need to remake plots, prepare final tables and even rewrite some small parts of the paper. This process is done in collaboration with the production teams of the journal and can take from a few days to a few weeks. Final editing is performed in collaboration with professional writers who take account of English language and style.

As in any other professionally published work, the last editorial step consists of sending the paper in its very final format (commonly called  ‘galley proofs’) to the authors for their final approval. When this is done, a publication date is assigned and the peer review process is complete.

…hooray!

Scientific results can also be presented in conferences or other media, but these are not considered valid references unless they are published in a peer review journal. Alternative peer review procedures are being tested, but still the vast majority of scientific production goes through this classic peer review system.

… reaching the public!

It is becoming increasingly important to raise awareness of new scientific (peer reviewed) discoveries, and to be clear of what they mean to all of us. Scientists often don’t have time nor the skills to do that, so this falls into the hands of outreach, press offices, science writers and science communicators in general. When a significant result is achieved, the information needs to be transformed from the dry rigour of a scientific paper to something non-specialised audiences can digest. This includes the so-called general public, but also companies, governments and policy makers who might need to decide on crucial matters based on the most updated evidence.

So, if you are a scientist and once the paper is accepted for publication, it’s a good time to contact your outreach department and work together on how to best bring the new results to the public.

Farewell, Pale Red Dot #1

The Pale Red Dot team now goes back to their daily duties. A research paper has been written and submitted to a research journal. The review process can take anytime between a few weeks to a few months. Fingers crossed! The web articles and posts in social media will remain available for your enjoyment.

A second phase of Pale Red Dot project might start soon, with more articles and further details on what the data tells us. Do not delete us from your favourite lists just yet!

Cheers, and don’t forget to look at the sky from time to time!

all

Pale Red Dot team

Science and edition; Guillem Anglada-Escude (editor-in-chief), Gavin Coleman, John Strachan (QMUL/UK), Cristina Rodríguez-López, Zaira M. Berdinas, Pedro J. Amado (IAA/Spain), James Jenkins (UChile/Chile), Mikko Tuomi (Herts/UK), Christopher J. Marvin, Stefan Dreizler (U.Goettingen/Germany), Julien Morin (U.Montpellier), Alexandre Santerne (CAUP/Portugal), Yiannis Tsapras(Heidelberg/Germany).

Support; Matthew McKinley Mutter (English language editor, QMUL/UK), Predrag Micakovic (web & IT support, QMUL/UK), Silbia López de Lacalle, Ruben Herrero Illana (Editorial support and spanish translations, IAA/CSIC), Radek Kosarzycki (media partner, polish translations)

Observatories; Oana Sandu, Lars Lindberg Christiansen, Richard Hook (European Southern Observatory, Education and Public Outreach Department), Edward Gomez (LCOGT.net, Scientist & outreach officer), Nicolás Morales (Research scientists, SPACEOSB-San Pedro de Atacama Celestial Explorations)

Kampanjan ensimmäinen puolisko

Nyt kun puolet kampanjan havainnoista on saatu kerättyä HARPS-spektrografilla ja LCOGT.net sekä ASH2 teleskooppiverkostoilla (mittaavat Proxima Centaurin kirkkauden muutoksia), on aika katsoa hiukan tarkemmin mitä havainnot pitävät sisällään. Perustuen aiempiin mitttauksiin, olemme aavistelleet näkevämme pieniä muutoksia tähden säteisnopeudessa. Alustavien arvioiden mukaan ne vastaavat muutaman metrin sekuntivauhtia, mikä tarkoittaa, että kykenemme mittaamaan muutokset tähden liikkeessä noin ihmisen kävelyvauhdin tarkkuudella. Nämä muutokset eivät kuitenkaan voi ylittää 4-5 metrin sekuntivauhtia, koska muutoin ne olisi jo saatu kartoitettua UVES-spektrografin havaintojen avulla.

Valitettavasti emme kuitenkaan voi paljastaa täsmlälisesti mit ähavainnot pitävät sisällään, jotta emme vaikuttaisi tulosten riippumattomaan arvioitiprosessiin lähitulevaisuudessa. Voimme kuitenkin näyttää muutamin esimerkein miltä havainnot luultavasti näyttävät ja mitä ne kertovat Proxima Centaurista ja sitä mahdollisesti kiertävistä planeetoista. Ohessa simuloidut mittaussarjat havannollistavat kolme todennäköisintä tulosta, joita kampanjalta voi odottaa nyt kun puolet havainnoista on saatu tehtyä. Yksi näistä kuudesta simulaatiosta onkin todellisuudessa se aito mittaussarja – osaatko arvata mikä?

Esimerkki 1 – Säteisnopeuden satunnaiset muutokset

Kuva 1 - Pelkkää mittauskohinan aiheuttamaa variaatiota.
Kuva 1 – Vasemmalla simuloidut säteisnopeuden mittaukset, keskellä havainnollistus jalsollisen signaalin tilastollisesta havainnoinnista ja oikealla mallinnettu planeetan aiheuttamt nopeuden muutokset. Kummassakaan havaintosarjassa ei ole tilastollisesti merkitseviä jalsollisia variaatioita. Kuva: Guillem Anglada-Escude/palereddot.org

Kuvassa 1. vasemmalla on kaksi esimerkkiä tyypillisestä havaintosarjasta, joka sisältää vain satunnaisia mittauskohinan aiheuttamia muutoksia. Pienet pystyviivat punaisten havaintopisteiden ylä- ja alapuolella kuvastavat mittausvirheitä (noin 1 m/s). Sääolosuhteiden muutokset observatoriolla aiheuttavat havaintoihin vaihtelevan suuruisia virheitä. Keskellä näkyy niin kutsuttu periodogrammi. Se kertoo mitkä jaksollisuudet ovat kaikkein todennäköisimpiä havaintosarjoissa ja edesauttaa määrittämään ovatko ne tilastollisesti merkitseviä, eli ovat alle 0.1% todennäköisyydellä satunnaiskohinan aiheuttamia (eli ylittävät sinisen katkoviivan). Kummassakaan esimerkin mittaussarjoista ei ole tilastollisesti merkitseviä jaksollisuuksia.

Esimerkki 2 – Viitteitä planeetan signaalista mutta myös tähden aktiivisuudesta

Kuva 2 - Systemaattisia muutoksia mutta ei planeetan aiheuttamaa signaalia.
Kuva 2 – Visuaalinen tarkastelu viittaa systemaattisiin nopeuden muutoksiin mutta niiden jaksollisuutta ei voida osoittaa tilastollisesti merkitsevästi ja ne voivat siksi olla esimerkiksi tähden pinnan aktiivisuuden aiheuttamia. Vasemmalla mallinnetut planeetan aiheuttamat variaatiot eivät näytä kovinkaan uskottavilta, koska ne viittaavat soikeisiin ja siten epätodennäköisiin kiertoratoihin. Kuva: Guillem Anglada-Escude/palereddot.org

Kuvassa 2. on kaksi emerkkiä havaintosarjoista, jotka pitävät sisällään planeetan aiheuttaman jaksollisen signaalin mutta myös tähden aktiivisen pinnan aiheuttamia variaatiota. Kuten esimerkissä 1, signaalit eivät ole riittävän voimakkaita, jotta ne voitaisiin havaita tilastollisesti merkitsevästi. Tässä tapauksessa ainoaksi mahdollisuudeksi jää lisähavaitojen tekeminen (onneksi tässä on vasta puolet). Vaihtoehtona on myös koettaa mallintaa tähden aktiivisen pinnan aiheuttamia variaatioita perustuen riippumattomiin kirkkausmittauksiin – tästä lisää professori Suzanne Aigrainin haastattelussa (engl.).

Esimerkki 3 – Havainto planeetan aiheuttamasta signaalista

Kuva 3 - Planeetan aiheuttama jaksollinen signaali.
Kuva 3 – Kaksi tapausta, joissa on selvä planeetan aiheuttama jaksollinen signaali. Kuva: Guillem Anglada-Escude/palereddot.org

Kuvassa 3. on havainnollistus siitä, miltä todellinen planeettahavainto näyttäisi. Tällainen havainto on Pale Red Dot -kampanjan tavoitteena kunhan varmistuu, ettei sillä ole mitään tekemistä mahdollisten tähden kirkkausmuutosten kanssa ja on siksi planeetan aiheuttama havaintoja vaikeuttavan tähden aktiivisuuden sijaan.

Pysykää kuulolla!

‘The Signal’

The campaign is up and running! As of February 9th 2016, we have only lost two nights on HARPS due to weather, which means we have 15 good qualityspectra ready for processing. On the photometric follow-up side, the LCOGT telescopes have been obtaining good data (photometry in UBV bands), and the ASH2 telescope has already accumulated 19 nights of good photometry as well (visual and red colours). The BOOTES station is suffering technical difficulties that we hope to sort out soon. Fortunately, the ASH2 telescope (the last one to join the effort, but the most successful photometer so far!) offered a degree of redundancy that saved the day! We will introduce all the observatories involved in forthcoming posts.

Feb8
Status update of the observations. We recently reached 25% of the HARPS data, and two photometric follow-up observatories have been operating nicely over the same period. We expect more downtime due to weather, but the survey goals will probably be achieved if we can hit 80% of the planned observations.

Now that we also had the opportunity to read about the Doppler method and how stellar activity can mimic the presence of a planet, let’s talk about what we are trying to achieve here. Analysis of previous campaigns show that a possible smooth signal was observable when monitoring the star at moderately high cadence; but we must remain cautious because stellar activity can produce the same kind of variability. As described in the article by Paul Gilster, Proxima has been monitored for small planets before. The most exhaustive works include the UVES/ESO survey for rocky planets around M-dwarfs, conducted between 2000 and 2009; the searches with HARPS by the Geneva team; and recently obtained data from our own high cadence program with HARPS, called Cool Tiny Beats(2013-2014). Here are some of the technical details for those of you who are interested in them…

The VLT/UVES Doppler data, and possible signals in it

The UVES Doppler measurements were published in Kuester & Endl 2008. In previous posts (eg. see Figure 1), we have seen that if we have a planet we should see an oscillatory motion over time. These measurements didn’t look much like that (Figure 2). Still, the velocities of UVES seemed to be not completely random.

Example of measurements (in red) overplotted on the expected Doppler signal caused by an exoplanet on the Star. Changes in the velocity of the Sun-like star 51 Peg used by M. Mayor and D. Queloz to infer the presence of a gas-giant planet in a short period orbit around the star.
Figure 1. Example of measurements (in red) overplotted on the expected Doppler signal caused by an exoplanet orbiting a star. Changes in the velocity of the Sun-like star 51 Peg, used by M. Mayor and D. Queloz were used to  infer the presence of a gas-giant planet in a short period orbit around the star.
Doppler measurements of Proxima from UVES. No clear sinusoid can be spotted by eye, which already rules out the presence of long period gas giants around the star.
Figure 2. Doppler measurements of Proxima from UVES. No clear sinusoid can be spotted by eye, which already rules out the presence of long period gas giants around the star.

Stars are only visible for a few months of a year, so that could be the smoking gun of a planet with a period similar to Earth that we happen to be sampling at more or less random moments of the orbit. Kuester & Endl 2008 had reasons to suspect that this variability was indeed caused by activity, or even some unknown instrumental effect. Once that possible signal was removed by fitting a sinusoid to it, very little remained in the residuals besides apparently random noise at the 2-3 m/s level. The Doppler signal of a planet is stronger if the planet is closer to the star (as in the Solar System where Mercury takes less than three months to circle the Sun, the motion of close-in planets is faster). So, while no clear signal could be extracted from these measurements, the data did tell the researchers that no large planets were orbiting the star with periods shorter than few hundred days.

Limits to the minimum mass of planets orbiting Proxima. Concerning the 'Habitable Zone' (here marked in green between 4 and 15 days, but new models suggest it extends to periods as long as 27 days), planets down to 3 Earth masses (minimum mass) were ruled out by the data.
Figure 3. Limits to the minimum mass of planets orbiting Proxima. The ‘Habitable Zone’  is marked in green between 4 and 15 days, but new models suggest it extends to periods as long as 27 days. Planets down to 3 Earth masses (minimum mass) were ruled out by the data. Extracted from Endl, M.; Kürster, M. 2008 A&A

The minimum masses of planets ruled out by UVES are illustrated in Figure 3. Let us note that we say ‘minimum mass’ of the planet because the Doppler method only measures the motion along our line of sight. Even in that case, statistical arguments indicate that it is highly unlikely to find any planet less than ~5 times the mass of the Earth in its habitable zone, with other techniques. With this upper limit set, the UVES program stopped observing Proxima and another handful of M-dwarf stars at the end of 2008.

The HARPS/Geneva team observations of Proxima prior 2012

During the same years, Proxima was observed about 25 times with HARPS. While the star did show variability at the 2-3 m/s level, it also showed evidence of activity in occasional flaring events, and some excess of radiation coming from its chromosphere. In any case, the measurements were consistent with those of the UVES survey in the sense that no obvious signal was detectable above ~2 m/s. In 2013, the star was again observed in the extended HARPS survey for M-dwarfs led by the ex-Geneva astronomer X. Bonfils, now based in Grenoble, but no report has appeared on significant period variability so far. So these campaigns led to no convincing evidence of a signal.

Doppler velocity measurements by X.Bonfils and his team taken between 2002 and 2009 with HARPS. Source : Bonfils et al. 2013 A&A, available via arXiv.
Doppler velocity measurements by X.Bonfils and his team taken between 2002 and 2009 with HARPS. Source : Bonfils et al. 2013 A&A, available via arXiv.

The ‘HARPS – Cool Tiny Beats’ observations (2013-2014)

In 2013, the same team as  the Pale Red Dot campaign started a programme to measure radial velocities at high cadence (focused on a small sample of very nearby M-dwarfs) to hunt for short period planets, pulsations and understand the connection of stellar activity with apparent Doppler signals. Proxima was a natural target for the survey, which was executed in two runs of 12 nights each (May 2013-Jan 2014). As opposed to the rest of the stars in the sample, the radial velocity measurements of Proxima were smoothly varying over both observing runs. Unfortunately, given the length of both runs, the strict periodicity of the variability could not be verified. Worse than this, the long term Doppler variability found by the UVES survey was still present but seems rather unpredictable, meaning that combining the data from years ago did not help much in confirming it. This is when Pale Red Dot was conceived…

Doppler measurements of Proxima obtained in 12 consecutive nights in May 2013, suggestive of smooth variability on the timescale between 10 and 20 days. The origin of this 'signal' is what the Pale Red Dot campaign is trying to figure out. Image credits : G.Anglada-Escude.
The top panel contains Doppler measurements of Proxima obtained in 12 consecutive nights in May 2013 which are suggestive of smooth variability on the timescale between 10 and 20 days. The lower panel is what we call a ‘periodogram’, which is a mathematical tool to identify possible periodicities in the data. Because the observing run was limited to ~12 days, we cannot really constrain the putative period with this data only. The Pale Red Dot campaign is trying to figure out if this is a strictly periodic signal feature by observing the star ~60 nights in a row, thus covering several cycles of the putative signal, and comparing the variability with simultaneous photometry. Image credits: G.Anglada-Escude.

So while we are convinced there is a signal in the Doppler measurements of Proxima, previous data do not allow to confirm its presence and clarify its origin. The long term variability of Proxima spoiled our attempts to combine data from previous observations so we needed a dedicated campaign.

In summary

Combination of UVES and HARPS data at different cadences suggest that the star is showing a smoothly varying Doppler signal. Since the UVES survey set an upper limit between 2-3 Earth masses and if the signal is not activity induced, it must correspond to a planet smaller than that (between 1-2 Earth masses>). The signal might well be caused by stellar activity, which should be quasi-periodic as opposed to the strict periodicity of the orbital motion of a putative planet. So this is what we want to figure out! If you really want to learn more, feel free to any member of the Pale Red Dot team!

What is the exact plan?

We are following Proxima Centauri for about two months. If the planet is there we should see the velocity of the star going up and down between 3 and 5 times depending on the precise period. Simultaneously, we are monitoring Proxima with telescopes from LCOGT.net, the ASH2 Atacama telescope and the BOOTES network. The contiguous and regular sampling of the observations together with quasi-simultaneous photometry should allow us to model its long term variability better and, hopefully, confirm whether the Doppler signal is caused by a planet or not. If it isn’t…  we will move on and keep searching for #palereddots around other nearby stars…

Thanks for following!

Projekti käynnistyy!

… toivotko löytäväsi kalpean punaisen pisteen?

Kyllä! On mahdollista, että Aurinkoa lähinnä sijaitsevaa M-sarjan kääpiötähteä nimeltä Proxima Centauri kiertää pieni planeetta mutta siihen viittaavat tiedot voivat johtua myös tähden magneettisesta aktiivisuudesta. Aiomme havaita Proximaa kahden kuukauden ajan planeettojen etsintään erikoistuneella laitteella nimeltä HARPS, sekä kahdella pienemmällä teleskoopilla. Tämän havainnoinnin seurauksena Doppler-signaalin luonne kyllä paljastuu… hetkinen, ei niin nopeasti!

Doppler-signaali? Mikä ??#@!… kummajainen se on? Magneettinen M-kääpiötähti, onko se rock-bändi? Kaksi kuukautta? Kuulostaa pitkäveteiseltä! Eikö planeettoja voi etsiä nopeammin? Eikö niitä kannattaisi etsiä avaruudesta käsin? Kuinka kauan kestää ennen kuin pääsemme käymään siellä?…

Näihin ja  moniin muihin kysymyksiin vastaavat planeettojen etsinnän ammattilaiset palereddot.org -sivustolla, jolla keskustellaan myös eksoplaneetoista, elämän etsinnästä muilta planeetoilta, havaintolaitteista ja -projekteista ja siitä, mitä ajattelemme elämästä, maailmankaikkeudesta ja kaikesta … 😉

Kuten kaikki hyvä, Pale Red Dot loistaa kirkkaasti ja päättyy liian nopeasti. Kun havaintoaineisto on saatu kerättyä (maaliskuun lopulla) siirrymme tieteellisen analysoinnin pariin ja sivustomme hiljenee joksikin aikaa. Tulokset lähetetään tieteelliseen vertaisarviointiin julkaisua varten ja vasta tämän arvioinnin jälkeenniistä tiedotetaan julkisesti – mitä ne sitten lienevätkään! Tässä prosessissa voi mennä aikaa mutta tiedotamme sen etenemisestä säännöllisesti.

Haluatko tietää kiertääkö lähitähteämme planeetta? Me haluamme! Pysy siis kuulolla…

…minkälaisia artikkeleita sivustolla sitten julkaistaan?

  • Asiantuntijoiden taustoituksia ja näkemyksiä eksoplaneettatutkimuksen pioneereilta, avaruusteleskooppien ja maanpäällisten jättiläisteleskooppien käyttäjiltä sekä monilta avaruustutkimuksen ja tähtitieteen alan visionääreiltä. Asiantuntijoiden näkemyksiä julkaistaan sunnuntaisin (sopii luettavaksi iltapäiväkahvien kanssa) ja asiantuntijoiden taustoitukset julkaistaan viikolla säännöllisin väliajoin.
  • Observatorion elämää puolestaan on sarja artikkeleita, jotka kertovat havaitsijoiden työstä ja modernien observatorioiden toiminnasta. Sarjassa julkaistaan kuva- ja videomateriaalia kulissien takaa. Sarjan artikkeleita julkaistaan joka lauantai.
  • Projektipäivitykset julkaistaan joka perjantai yhdessä viikon kohokohtien kanssa. Saatamme myös tähtitieteilijöille tyypilliseen tapaan marista säästä – havaintoja kun ei voida tehdä, jos taivaalla on pilvenhattaroita, joten sää on yksi tähtitieteilijöiden suosikkipuheenaiheista.

Oletko siis valmis liittymään planeetanmetsästyksen reaaliaikaiseen seurantaan?

Kysymyksiin vastaamme mielellämme Twitterin puolella @Pale_Red_Dot ja  #PaleRedDot.

Katso myös videoitu tiivistelmä projektista osoitteessa http://www.eso.org/public/finland/announcements/ann16003/

Artikkelit julkaistaan englanniksi mutta niitä pyritään kääntämään suomeksi (ja muille kielille) mahdollisuuksien mukaan.

Etsintä alkaa tammikuussa 2016

Pale Red Dot (punainen kalpea piste) on tähtitieteen tutkijoiden eksoplaneettojen havaintoprojekti, joka käynnistyy 11.1.2016 ja jonka etenemisestä on tarkoituksena raportoida yleistajuisesti reaaliajassa. Pale Red Dot toteutetaan laajana havaintoihin osallistuvien tähtitieteilijöiden ja Euroopan eteläisen observatorion (www.eso.org) sekä useiden yliopistojen välisenä yhteistyönä. Mukana ovat: Queen Mary University of London/UK (www.qmul.ac.uk), Instituto de Astrofísica de Andalucía/Spain ( www.iaa.es), Universidad de Chile (http://www.das.uchile.cl), University of Hertfordshire/UK (www.herts.ac.uk), University of Goettingen/Germany (www.uni-goettingen.de), Université de Montpellier (http://www.lupm.univ-montp2.fr/), LCOGT.net (https://lcogt.net/), and BOOTES telescope network (http://bootes.iaa.es/).

Jatkuvien tieteellisten havaintojen tilannepäivitysten lisäksi tällä verkkosivulla julkaistaan tähtitieteen kansainvälisesti johtavien tutkijoiden ja tieteen popularisoijien yleistajuisia kirjoituksia. Havaintoprojektista ja sen sujumisesta tiedotetaan tarkemmin lähipäivinä.

Liity mukaan!