Category Archives: Observatory life

Entre el ocaso y el alba con el gemelo norteño de HARPS

Por Zaira M. Berdiñas, Instituto de Astrofísica de Andalucía (IAA-CSIC)

Los observatorios son los laboratorios de los astrónomos, o mejor dicho, son nuestra ventana al Universo, que es El Laboratorio, con mayúsculas.

¿Conoces a alguien que, al mirar al cielo de noche, diga: “¡bah! no me gusta”? Yo no, pero también es cierto que a menudo la gran cantidad de luz de nuestras ciudades no nos da oportunidad de comprobar cual sería realmente la reacción; y quizá también por eso la inmensidad del Universo no es algo en lo que pensemos en nuestro día a día. Por eso, cuando conocemos a alguien con curiosidad por nuestra “estrellada profesión” nos suele preguntar –con una mezcla de curiosidad y extrañeza– “¿Cómo decidiste hacerte astrofísico?”. Cómo se desarrolla la vida en un observatorio puede causar la misma sensación de extrañeza y desconocimiento. De hecho, creo que ni mi madre sabe muy bien lo que hago allí arriba –¡no te enfades, mamá!– por eso en este artículo voy a describir un poco como es la rutina diaria en la montaña.

plane.001
Comenzando el viaje en el aeropuerto de Granada. Créditos: Zaira M. Berdiñas.

Como muchos otros viajes, este comienza en el aeropuerto. Pero espera, eso no es del todo justo, porque antes de emprender el camino al observatorio ya se ha hecho gran parte del trabajo. Un par de veces al año, los telescopios ofrecen sus noches de observación en lo que denominan “llamamiento de propuestas”. En esos periodos los astrónomos deben estrujar sus cerebros y competir para escribir el mejor proyecto científico. El tiempo en los telescopios es caro y solo aquellos que demuestren que harán el mejor uso de ellos, tendrán la oportunidad de usarlos. Los “comités de asignación de tiempo”, que están formados también por astrónomos, deciden qué propuestas se aceptan y cuáles no. Así que estoy aquí, en el aeropuerto, lo que quiere decir que nuestro proyecto pasó el corte (¡yupi!). Tras un vuelo de 3 horas aterrizo en la isla de La Palma; quizá pienses que ya casi he llegado, pero aún me separan del Observatorio del Roque de los Muchachos unos cuantos cientos de curvasCarlos el conductor, y tras este zigzagueante viaje también mi amigo, me deja en la Residencia. Ésta es el núcleo de la vida en el observatorio: aquí es donde puedes ver astrónomos desayunando muy tarde,  cenando muy pronto, durmiendo durante el día o incluso jugando al ping-pong en su tiempo libre. Pero ya son las 4 de la tarde según mi reloj y no tengo tiempo que perder antes de que se ponga el Sol. Cojo un coche y conduzco hasta el Telescopio Nazionale Galileo (TNG), donde Vania, mi astrónoma de apoyo, me está esperando en la sala de control del telescopio para explicarme cómo configurar el instrumento que voy a usar para tomar mis datos: HARPS-N.

teles.001
Izquierda: Telescopio Nazionale Galileo (TNG). Derecha: Sala de control localizada en la planta baja del edificio del telescopio. Las pantallas de la derecha las usa el operador del telescopio para controlar las condiciones atmosféricas y los parámetros del telescopio. Las pantallas de la izquierda son para manejar el instrumento, HARPS-N. Créditos: Zaira M. Berdiñas.

De la misma forma que Pale Red Dot usa HARPS, instalado en el Observatorio de La Silla (Chile), para tomar los datos de velocidad radial de Próxima Centauri, esta noche yo voy a usar HARPS-N, su gemelo en el hemisferio norte, para buscar planetas alrededor de otras estrellas rojas. Una vez que Vania termina sus explicaciones y después de inicializar y calibrar el instrumento, vuelvo rápidamente a la Residencia, ceno algo, guardo mi “super-snack” para la madrugada, leo algunos e-mails de mi equipo deseándome un cielo despejado, y conduzco hasta el telescopio con el Sol poniéndose a mi espalda. De camino, la cúpula abierta me dice que Daniele, el operador del telescopio, ya está listo para comenzar a observar. Apenas una hora después del crepúsculo, el cielo ya está lo suficientemente oscuro para comenzar con el procedimiento de enfoque del telescopio: la noche ha comenzado.

dome.001
Telescopio Nazionale Galileo con su cúpula abierta en mi camino desde la Residencia. Créditos: Zaira M. Berdiñas

Me paso el resto de la noche observando mi lista de estrellas. Lo que hago es enviar comandos de observación para apuntar el telescopio y comenzar la exposición, mientras, compruebo que los espectros que voy tomando son de buena calidad. Durante toda la noche Daniele, que está a mi lado, controla las condiciones climáticas y los parámetros del telescopio desde unas nueve pantallas. Son casi las 2 de la mañana y le toca el turno a la estrella más débil de mi lista. Como ésta necesita una exposición más larga, me da la oportunidad de salir fuera y disfrutar de uno de los cielos más increíbles que puedes contemplar y, por qué no, de tomar unas cuantas fotos.

tng
Fotografía de la Vía Láctea y el Telescopio Nazionale Galileo, hecha mientras se toma un espectro de larga exposición en el telescopio. Créditos: Zaira M. Berdiñas.

Tras casi 10 horas y más de un café, comienza a amanecer. Desconectamos todos los sistemas y conducimos hasta la Residencia, siempre con las luces apagadas para no molestar a colegas que puedan estar realizando aún alguna prueba de última hora. Y ya hemos acabado, los datos se analizarán durante los próximos meses, pero ahora son las 7 de la mañana, la noche ha terminado oficialmente, y lo único que me espera ahora mismo es mi cama. ¡Buenos días!

me.002
Zaira M. Berdiñas

Sobre la autora.

Zaira M. Berdiñas es doctoranda de último año y trabaja en el grupo del espectrógrafo CARMENES en el Instituto de Astrofísica de Andalucía. Su investigación se centra principalmente en la búsqueda de exoplanetas compactos y de pulsaciones en enanas de tipo espectral M usando espectrógrafos de velocidades radiales alimentados por fibras ópticas. En concreto, lidera las campañas observaciones con HARPS-N del proyecto Cool Tiny Beats, del que nació Pale Red Dot. Zaira también está activamente involucrada en el desarrollo de instrumentación. En este sentido, es parte del equipo de desarrollo del “Radial Velocity Corrector (RVC)”, una alternativa a los métodos de “scrambling” para espectrógrafos de velocidades radiales alimentados por fibras de alta precisión que no están térmicamente estabilizados.

Equator crossing! Live acquisition of 30-th spectrum with HARPS

We acquired the 30th spectrum with HARPS on February 27th at 8.40 UTC from La Silla. James Silverster was the observer at La Silla and he send life updates of the moment. His team is using HARPS in polarimetric mode to make measurements on stellar magnetic fields. We will have an article at palereddot.org from them soon, so you can see how stellar magnetic fields can be measured in practice.

Here is an extract of the twitter and Facebook live feeds of the event:

08:30 UTC :All green lights at ESO Astronomy La Silla. One more spectrum and we will reach 30/60! Standing by!

LaSillaDimm
Meteo monitor information. Image quality looks really good, seeing <1" (bottom right panel, the seeing tells you how 'point-like' a star would look through a telescope). 1" arcsecond would be awesome in any decent observatory. For the high chilean observatories (La Silla, Paranal, Las Campanas, Gemini-S, etc.), <1" is routinely achieved, which is why the high Chilean mountains are such a good place for astronomy, besides being dry and mostly cloudless.[/caption] 08:45  UTC : @jimmysilvers > @Pale_red_dot Photons are being collected as we speak!

08:46 UTC : @Pale_red_dot > Cool! Send us a picture!!!

08:58 UTC : @jimmysilvers > here you go!

harps_fibre

08:50 UTC : @Pale_red_dot > Yesss, that’s a live image of Proxima’s photons being sucked by HARPS science fibre (dark central hole). Awesome

08:55 UTC :While we wait for the integration to end, how about a stroll and a look at the sky from La Silla? Thx @jimmysilvers

[caption id="attachment_1251" align="alignnone" width="474"]Southern sky at the end of February from La Silla observatory. Credits  : James Silvester Southern sky at the end of February from La Silla observatory. Credits : James Silvester

09:15 UTC : Integration complete. File saved, stored, and shipped to ESO’s HQ at Garching. Thanks James for sharing these moments.

The raw file reaching ESO's archive at Garching marks the end of a successful observation.
The raw file reaching ESO’s archive at Garching marks the end of a successful observation.

09:20 UTC : @Pale_red_dot > success! 50% data collection achieved! #palereddot

Status update Feb 27. One bonus spectrum was obtained on Feb 25.
Status update Feb 27. One bonus spectrum was obtained on Feb 25.

09:30 UTC : Bedtime for the observers. Really high success rate so far. Lots of updates and articles next week! thx for following

Inspiring the public with exoplanet discoveries

As astronomers we have a fantastic subject for sharing with a non-specialist audience. It is not only of wide-scale general appeal but there are regular discoveries which capture the public’s imagination. Over the last 20 years exoplanet research has delivered some of the most exciting and inspiring results.

In 1995 the first exoplanet orbiting a Sun-like star was discovered, 51 Pegasi b. It was discovered just before I went to University to study a degree in Astrophysics, so I have a close attachment to it. It provided a fantastic starting point for me to talk about science in social settings (something which is often seen as anathema). My very first public talk was in 1996 about this new science of exoplanets.

Press Coverage

The first impression many of the public receive about a scientific discovery is through press coverage. This is a particularly important in keeping public interest about a long lasting or extended research project or even space mission.

NASA’s Kepler was highly successful in attracting media attention as was prolific at finding exoplanets. Their policy of releasing information about planetary candidates before they had confirmed if there really was the signature of an exoplanet in the data, may have helped this. In any case, Kepler is by far the most successful mission at finding exoplanets, boasting over 1000 discoveries (at time of writing).

Some of the most inspired exoplanet PR are the Exoplanet Tourist Bureau pictures produced by NASA’s Jet Propulsion Laboratory (which is on the verge of brand advertising). This was a very clever piece of art which not only made visually appealing pictures but ones which very simply captured a key piece of science that was known about each planet. Although not strictly related to any mission, the Exoplanet Tourist Bureau’s first 2 picture-postcards were of Kepler planets.

Recent art poster from the 'Exoplanet travel Bureau', an outreach campaign by NASA's JPL. In this poster, all planets contending to be the first ever detected exoplanet are featured. Credits : NASA/JPL
Recent art poster from the ‘Exoplanet travel Bureau’, an outreach campaign by NASA’s JPL. In this poster, all planets contending to be the first ever detected exoplanet are featured. Credits : NASA/JPL

Pitching your story to the press is tricky, as the discovery of the very first exoplanet shows. Many people think the first exoplanet was 51 Peg b but it was actually a planet orbiting around a neutron star (a dense, invisible object left over from the violent death of massive star and quite unlike our Sun), discovered in 1992. Perhaps this was too much uncertainty in the discovery, maybe the physics was not presented in a tangible way, or maybe even the name of the planet, PSR B1257+12 B, was just too obscure. For whatever reason this mysterious heavenly body is rarely attributed with the title of First Exoplanet Discovered.

Recently the International Astronomical Union (which has, amongst other things, responsibility of the naming of heavenly bodies) launched a competition to give many exoplanets and exoplanetary systems new names – Name ExoWorlds. The public could make proposals for renaming of selected exoplanets. The results were announced in December 2015 and PSR B1257+12 B has been renamed Poltergeist – an invisible entity which creates physical disturbances (representing the effect the planet has on it’s host star).

Citizen Science

After attracting some attention from the public, what happens next? As a scientist who is passionate about education and engagement, I want that audience to take their new-found interest further.

The rise of citizen science has lowered the barriers for involving anyone in scientific discovery. The approach usually requires participants to do a repetitive task which a computer finds difficult but the human brain finds easy. Crowd sourcing scientific measurement taking in this way has been pioneered by The Zooniverse, who have a project where participants are invited to search through Kepler data which had been rejected by the automatic NASA planet finding software.

During the BBC Stargazing Live TV programmes in January of 2012, the value of this method was spectacularly proved. Zooniverse partnered with BBC to launch a public campaign which resulted in over a million independent measurements and the discovery of an exoplanet – PH1b or its formal, canonical name – Kepler-64b.

Personally, I define “citizen science” slightly differently as “a large scale remotely accessible science investigation performed by non-specialists, which trains them in data analysis and also the subject area”. My definition gives citizen science more of an educational angle. This was the thinking behind a citizen science project I made, along with my then colleague at LCOGT, Stuart Lowe, called Agent Exoplanet.

'Agent exoplanet' is an example of a citizen science effort. http://lcogt.net/agentexoplanet/
‘Agent exoplanet’ is an example of a citizen science effort. http://lcogt.net/agentexoplanet/

The primary aims of Agent Exoplanet are to analyse real scientific data taken with the LCOGT network, combine your measurements with other citizen scientists, display this result and understand the science it is showing. We wanted to provide a self-contained, easily accessible platform, to maximise participation by a non-specialist audience. All of the analysis tools are built into it, from graphing data points, model fitting and make the measurements directly on the astronomical data files. While the participants will not discover new exoplanets with Agent Exoplanet, they will have a better understanding of the scientific process and about exoplanet research. You can try it yourself too!

Visualising the data

An important component of an sharing any scientific discovery is to make the information easily understandable. One of the most powerful ways to do that is with well thought out graphics.

Example for infographic for exoplanet visualization. Detection methods of all known exoplanets was made by Stuart Lowe. Source : The infographic book of space, http://cosmos-book.github.io/
Example for infographic for exoplanet visualization. Detection methods of all known exoplanets was made by Stuart Lowe. Source : The infographic book of space, http://cosmos-book.github.io/

An eye-catching and interactive visualisation of the sizes and detection methods of all known exoplanets was made by Stuart Lowe and Chris North for Cosmos: the infographic book of space. The different detection methods are colour coded and the you can explore some basic properties of each exoplanet by clicking on them.

One of the most beautiful and poetic visualisations of exoplanets I have seen was made by Alex Parker. It shows what all the currently known exoplanets would look like (nearly 2300 – many of these were just candidates when Alex made the video) orbiting around the same star, in this case the Sun. All the planets and orbits are scaled so their relative sizes and distances are appropriate for this model. They range in size from 1/3 to 83 times the radius of Earth. It is quite mesmerising.

Worlds: The Kepler Planet Candidates from Alex Parker on Vimeo.

In a week where astronomy has been in the news so much, with the momentous discovery of gravitational waves, it has shown to me that there is a huge public appetite for accessible science stories. Fortunately, for the last 20 years, exoplanets have provided a steady and varied diet of exciting discoveries, from Earth 2.0, to a diamond planet to the discovery of Tatooine. For a long time to come, I believed we will be surprised by the continued variety of exoplanets and strange solar systems the Universe provides us to study.

Eduard Gomez inside the TARDIS. It is a device from the BBC's 'Dr. Who' TV show which is both a time-machine and a starship; but it looks like a classic British telephone booth from the outside.
Eduard Gomez inside the TARDIS. It is a device from the BBC’s ‘Dr. Who’ TV show which is both a time-machine and a starship; but it looks like a classic British telephone booth from the outside.

About the author.  Edward Gomez is a professional astronomer and Education Director of LCOGT.net and honourary lecturer/adjunct faculty in the School of Physics and Astronomy. As part of his role with LCOGT he investigates novel ways to engage the public in astronomy. This has taken the form of creating citizen science projects like Agent Exoplanet, interactive educational web apps like Star in a Box, and online community events like Show Me Stars. The global education hub for LCOGT is based in Cardiff University In addition, he is part of the Schools Engagement Team and assist with the outreach of the Universit, which is funded by the Welsh Government‘s National Science Academy to run the programme Universe in the Classroom, inspiring children and teachers with Universe in a Box kits and stellar role models, across Wales. Universe in the Classrom is run in partnership with the international project Universe Awareness. Eduard is co-chair the IAU task force for children and schools, under the guidance of the Office of Astronomy for Development (OAD). Our aim is to help people in astronomically developing countries to engage with and inspire children and teachers. He also regularly appears on the BBC radio wales programmes, Science Cafe and Eleri Sion Show. He have served as guest judge for the national Debating Matters competition Currently he is working at how we make the LCOGT network accessible to the general public and what tools we need to make the most of its potential, and using the power of astronomical images to inspire people who would not normally be interested in science. He loves music and plays the lute.

The Las Cumbres Global Telescope Network

by Wayne Rosing, LCOGT Founder and Chief Technologist

I founded and incorporated Las Cumbres Global Telescope Network in 1992, but the notion of a global ring of telescopes, connected with the internet and using CCD detectors, first occurred to me in 1983. Others were discussing similar ideas. The plan was to build a global telescope (singular) dedicated to time domain astronomy. With six observing sites spread around the world, such an instrument could observe any single target continuously over many days,and could also interrupt planned operations to take data on new interesting transient objects, no matter where they might appear in the night sky.

My old world atlas has circles dating back as far as 1984, marking roughly where the LCOGT telescopes are located today. The aim was to have uniform sky coverage, pole to pole. That implied placing telescopes at roughly plus and minus thirty degrees latitude. In the South, the placement of continents pretty much determined the longitude choices. In the North, the objective was to be four hours East or West of each of the Southern sites. Then the result would be that for some periods of the year, provided the weather is clear, three sites would simultaneously be in the dark and able to image astronomical targets in the equatorial plane.

The LCOGT network

From the beginning of the project a key element was the notion of a near real-time scheduling process that would optimize the system’s choice of targets to achieve the best possible science at any given time while taking into account local conditions at the sites and scientific constraints. An additional requirement was that the entire system had to be robotic, not requiring human night assistants or remote real-time observers.

In 2005 LCOGT set about implementing this vision. By the end of 2005, LCOGT had acquired the two 2-meter Faulkes Telescopes (the FTs), located in Haleakala on Maui, Hawaii, and at Siding Spring, Australia. Although these are larger than the 1-meter telescopes that form the bulk of the current network, they add the capability of doing daily followup of fainter objects from both the Northern and Southern hemispheres.

Fading sunlight, a young crescent Moon, and brilliant Venus shared the western sky in this view of 2005’s final sunset from the top of Mount Haleakala, on Maui, Hawaii. Also known as the Sacred House of the Sun, Haleakala, is Maui’s dormant volcano. At 10,000 feet the summit is an ideal site for astronomical observatories, and this scene also features the silhouette of the northern hemisphere Faulkes Telescope. – image Credit & Copyright: Rob Ratkowski

During the next two years the foundation was developed for the global network we have today; Efforts were concentrated on upgrading the FTs, developing a software system to tie the network together, and on engineering two rings of telescopes, one on each hemisphere. LCOGT has since deployed nine 1-meter telescopes at four sites (in Chile, South Africa, Australia, and Texas), and plans to add another pair of telescopes in Tibet early in 2017. We still have the possibility of deploying three more 1-meter facilities if funding permits. In addition, seven 0.4-meter telescopes have been deployed at four sites (including the Canary Islands).

Three domes at night. Chile.

A side effect of this distributed and redundant capability is that, each year, LCOGT has tens of thousands of hours of observing time on its instrument. LCOGT scientists and partners can plan long-term key projects which may require telescope-years of observing time. There are three basic types of measurements LCOGT telescopes acquire: First, images of small patches of the sky. From these images one can derive celestial coordinates, relative brightness, and sometimes the rate of motion for stars, asteroids, near-earth objects, satellites and galaxies. Second, by taking images in multiple color bands astronomers can do photometric data reductions to classify each object based on general color characteristics. For example, blue stars are hotter than red ones. Third, spectroscopic measurements spread incoming starlight out into detailed color bins — from about 1000 colors over the visual spectrum to as many as 50000 resolved colors. Emission and absorption by specific atomic elements can be measured; chemical element abundances, stellar temperature and even local gravity can then be determined.

Current key projects on the network include:

1) The Next Generation Sample of Supernovae (PI: Andy Howell) – Using photometric and spectroscopic observations of both Type Ia and core collapse supernovae we can learn about their characteristics in a statistically significant sample. These types of exploding stars are used as astronomical ‘standard candles’, a way of measuring the distance to the far edge of the visible Universe.

2) Exploring Cool Planets beyond the Snowline (PI: Rachel Street) – Follow-up observations of microlensing events are employed to detect and study planets in the outer parts of planetary systems around distant stars. This project relies on the Einstein deflection of light by the gravity of one star to magnify, or ‘lens’, a star-planet combination found near the center of our galaxy 20,000 light years away.

3) Echo Mapping of AGN Accretion Flows (PI: Keith Horne) – By monitoring photometrically and spectroscopically a diverse sample of active galactic nuclei we can determine their physical characteristics using the reverberation mapping technique. Basically as matter falls into a large central black hole, energy is emitted and then is reflected in outer areas of the galaxy. Reconstruction of this data can give insight into the structure of galaxies.

As the first science projects matured, we complemented our imaging capabilities with low-resolution high-throughput spectrometers for the two FTs. Thanks to an NSF grant we are also building a network of high-resolution spectrometers which will be deployed as a global ring, each instrument being coupled to a pair of 1-meter telescopes. This capability will be used to validate and characterize new extrasolar planets found by space- and ground-based survey telescopes, and to advance astrophysics by studying pulsations, rotation, and the magnetic activity of stars.

NRES Prototype in the LCOGT lab

It has been a decade-long effort to build LCOGT into what it is today. The vast majority of the funding to do so has come from private sources. We are grateful for support for various parts of the effort from the University of St. Andrews on behalf of Scottish Universities Physics Alliance (SUPA), the National Science Foundation, NASA, the Qatar National Research Fund (QNRF) on behalf of Qatar Environment and Energy Research Institute, and the Dill Faulkes Educational Trust. Our site partners are the Australian National University, the Cerro Tololo Inter-American Observatory (CTIO), the Institute for Astronomy in Hawaii (IfA), the Instituto de Astrofisica de Canarias (IAC), the University of Texas at Austin McDonald Observatory, the Ali Astronomical Observatory of the National Astronomical Observatories of the Chinese Academy of Sciences (NAOC), and the South African Astronomical Observatory (SAAO).

We are grateful too for the dedicated effort provided by over 150 individuals who have built LCOGT from a dream into a scientific institution of which we can all be proud.

Wayne Rosing, January 2016.

Wayne Rosing

About the author. Rosing was an engineering manager at Digital Equipment Corporation (DEC) and Data General in the 1970s. He became a director of engineering at Apple Computer in 1980. There he led the Apple Lisa project, the forerunner to the Macintosh. He then went on to work at Sun Microsystems in 1985. After managing hardware development for products such as the SPARCstation, he became manager of Sun Microsystems Laboratories in 1990.[1] From 1992 through 1996 he headed the spin-off First Person, which developed the Java Platform. He was then chief technology officer at Caere Corporation, which developed the optical character recognition product OmniPage.

Rosing served as vice president of engineering at Google from January 2001 to May 2005. In May 2005 he was appointed a senior fellow in mathematical and physical sciences at the University of California, Davis, and continued to serve as an advisor to Google.

As a hobby throughout his career, Rosing built telescopes, telescope control systems, and ground telescope mirrors. At Davis, Rosing consulted on the Large Synoptic Survey Telescope project.

Primer espectro de HARPS. En directo desde La Silla

Last image of the all sky camera. Sun is rising. See you tomorrow #palereddot !
Última imagen de la cámara de cielo completo. El sol ya está saliendo. ¡Hasta mañana #palereddot !

[09:21:45] Alexandre Santerne: ¡Gracias por seguirnos! Fin de la noche. Es hora de que los astrónomos observando el #PaleRedDot se vayan a dormir.

[09:21:03] Guillem Anglada Escudé: algo más que añadir a tu audiencia?

[09:18:18] Guillem Anglada Escudé: vale. Prepararé el timeline. Con un poco de suerte, Twitter volverá a funcionar, así que pondré toda esta conversación.

[09:16:05] Alexandre Santerne: el seeing durante la observación 1.3” – 1.4″

¡Llega el primer espectro!

First spectrum of PaleRedDot from HARPS. Looks promising!
Primer espectro de PaleRedDot de HARPS. ¡Es muy prometedor!
Light going into HARPS as measured by its exposuremeter
El exposímetro capta la luz entrando en el instrumento HARPS

[09:08:14] Guillem Anglada Escudé: genial!

[09:08:04] Alexandre Santerne: Señal a ruido a 650nm = 65.3

[09:07:46] Alexandre Santerne: fin de la exposición

La imagen de la derecha es Próxima, centrada en la fibra óptica en el foco del telescopio. Esa fibra llega hasta el espectrómetro, que se encuentra en el sótano, sobre los cimientos y un montón de hormigón.

Integrando…

Control screen. The image on the right is Proxima centered on the optical fibre at the telescope.
Pantalla de control. La imagen a la derecha es Próxima, centrada en la fibra óptica del telescopio.

(no hay mucho que hacer durante los próximos 20 minutos, que es el tiempo que el telescopio va a estar integrando)

[08:49:51] Alexandre Santerne: nivel de flujo al 30%

[08:49:48] Guillem Anglada Escudé: genial

[08:46:41] Alexandre Santerne: comienza la exposición

[08:46:36] Alexandre Santerne: foco correcto

[08:43:07] Alexandre Santerne: comprobando el foco

[08:39:31] Alexandre Santerne: apuntando telescopio …

UTC 08:38 La sala de control del telescopio de 3.6m de ESO tiene un gran ambiente unos minutos antes de empezar el apuntado de #PaleRedDot

UTC 08:37. Dos minutos para empezar el apuntado del telescopio.

UTC 08:32. Twitter se ha caído (?!#@!) ¡pero seguimos adelante a través de la web!El primer espectro está a punto de obtenerse. ¡Ánimo Alex!

Sigue a Alexandre Santerne @eso La Silla mientras se obtiene el primero de los 60 espectros de Próxima.

Próxima hacia el final de la noche

CZD9d01WsAAo4kv

Atardecer del 18 de enero desde la Silla

sunset_

(Traducido del inglés por Rubén Herrero Illana)

Observando en ESO I. La casa de huéspedes

por Alexandre Santerne, ESO Photo Ambassador & investigador en exoplanetas en el Instituto de Astrofísica e Ciências do Espaço (Portugal)

General view of the gardens of ESO's guesthouse
Vista general de los jardines de la casa de huéspedes de ESO. Imagen creada por Alexandre Santerne/ESO

Los observatorios de La Silla y Paranal son dos de los lugares donde las observaciones de ESO tienen lugar. Los observatorios son lugares de trabajo como nuestras oficinas, pero situados a 11 000 km de Europa, y uno necesita varios días para viajar hasta ellos. Cuando viajamos a Chile como astrónomos visitantes[1], la primera parada es la casa de huéspedes de ESO. Situada en Santiago de Chile, la casa de huéspedes es un lugar silencioso y tranquilo donde normalmente se para por una noche para recuperar fuerzas del vuelo transoceánico hasta desde Europa (14 horas de vuelo, mas 5 horas de jet-lag), y prepararse para el horario nocturno de las observaciones.

 inner garden at ESO's guest house
Vista del jardín interior de la casa de huéspedes. Imagen por Alexandre Santerne/ESO

La casa de huéspedes tiene una docena de habitaciones con un bonito jardín botánico y una pequeña piscina privada. El sitio mas importante es, sin embargo, la sala de estar/comedor donde compartimos desayuno, comida y/o cena o incluso la hora del pisco sour [2] con otros astrónomos visitantes e ingenieros de otros países miembros de ESO [3].

ESO guest house living room. Image credits : Alexandre Santerne/ESO
Sala de estar de la casa de huéspedes de ESO. Imagen por : Alexandre Santerne/ESO

Las discusiones típicamente son sobre ciencia, observaciones, condiciones meteorológicas así como nuevos instrumentos siendo desarrollados en ESO; como por ejemplo la nueva generación de instrumentos para el VLT (Very Large Telescope – Telescopio Muy Grande)[4] y el European Extremely Large Telescope (Telescopio Europeo Extremadamente Grande) de 39 metros de diámetro [5]. Además de proporcionar acceso a instalaciones científicas punteras, las instalaciones de ESO son sitios ideales para conocer otros astrónomos y iniciar colaboraciones internacionales.

Notas:
[1]- Para minimizar costes de operaciones, la mayoría de obsevaciones en telescopios de ESO se ejecutan en modo servicio por astrónomos en plantilla de ESO especializados en el uso de instrumentos. Aún así, en algunos casos, algunas observaciones particularmente delicadas requieren la participación en vivo del astrónomo que las propuso. En estos casos se nos llama “astrónomos visitantes” (visiting astronomers).

[2]- Pisco Sour es una bebida popular Chilena (Peruana y Boliviana depende de a quien preguntes) que contiene Pisco (licor parecido al Brandy), limón y a veces clara de huevo.
[3]- Los miembros de ESO son Austria, Bélgica, Brasil, República Checa, Dinamarca, Francia, Finlandia, Alemania, Italia, Países Bajos, Polonia, Portugal, España, Suecia, Suiza y el Reino Unido. http://www.eso.org/public/about-eso/memberstates/
[4]- ver http://www.eso.org/public/teles-instr/vlt/vlt-instr/
[5]- ver http://www.eso.org/public/teles-instr/e-elt/